2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

Revisiting the double checkpointing algorithm

Jack Dongarra!, Thomas Herault! and Yves Robert!2
1. University of Tennessee Knoxville, USA
2. Ecole Normale Supérieure de Lyon & INRIA, France
{dongarra|herault} @eecs.utk.edu, yves.robert@ens-lyon.fr

Abstract—Fast checkpointing algorithms require distributed
access to stable storage. This paper revisits the approach
base upon double checkpointing, and compares the blocking
algorithm of Zheng, Shi and Kalé [1], with the non-blocking
algorithm of Ni, Meneses and Kalé [2] in terms of both
performance and risk. We also extend the model proposed
in [1], [2] to assess the impact of the overhead associated to
non-blocking communications. We then provide a new peer-to-
peer checkpointing algorithm, called the triple checkpointing
algorithm, that can work at constant memory, and achieves
both higher efficiency and better risk handling than the double
checkpointing algorithm. We provide performance and risk
models for all the evaluated protocols, and compare them
through comprehensive simulations.

[. INTRODUCTION

Parallel computing environments follow an exponential
trend in doubling their size on a regular basis. The Top
500 ranking' features a typical illustration of this trend
in the High Performance Computing world: the measured
performance doubled every 18 months for the last 15 years.
Since the multicore revolution, motivated by the impedi-
ment of frequency increase, this growth is sustained by the
multiplication of cores and sockets in parallel machines.
The International Exascale Software Project (IESP) [3], [4]
forecasts the Exaflop mark to be reached by high perfor-
mance supercomputers by 2019-2022. In their study, which
proposes an outline of the characteristics of an Exascale
machine based on foreseeable limits of the hardware and
maintenance costs, a machine in this performance range is
expected to be built from GHz processing cores, with thou-
sands of cores per computing node (up to 10'2 flop/s/node),
thus requiring millions of computing nodes to reach the goal.

A major concern in the IESP report is reliability. If we
consider that failures of computing nodes are independent,
the reliability probability of the whole system (i.e. the
probability that all components will be up and running
during the next time unit) is the product of the reliability
probability of each of the components. A very conservative
assumption of a fifty years MTBF (Mean Time Between
Failures) translates into a probability of 0.999998 that a
node will still be running in the next hour. However, if the
system consists of a million of nodes, the probability that
at least one unit will be subject to a failure during the next

Uhttp://www.top500.0rg

978-0-7695-4979-8/13 $26.00 © 2013 IEEE
DOI 10.1109/IPDPSW.2013.11

706

hour jumps to 1 — 0.9999981%° > 0.86. This probability is
significantly high, especially since the machine was used for
only one hour. One can conclude that many computing nodes
will inevitably fail during the execution of a long-running
Exascale application.

A traditional approach to tolerate failures in parallel
computing relies on rollback/recovery: processes can take
a checkpoint of their state, together (in coordinated check-
pointing protocols), or independently (in uncoordinated
checkpointing protocols with message logging). In case of
failures, they are rolled back from these saved states, to allow
further progress of the computation. A critical point of such
an approach is to store the checkpoint images efficiently
and reliably. One of the reasons why uncoordinated check-
pointing can provide a better efficiency than coordinated
checkpointing, despite the higher overheads it imposes on
a failure free execution, is because it reduces the amount of
data transferred at rollback [5].

Zheng, Shi and Kalé [1] consider the issue of where to
store the checkpoint images in order to reduce the demand
on I/O during checkpoint phases. They proposed a “buddy”
algorithm, that we call the double checkpointing algorithm
in the rest of this paper, because it creates a copy of the
process checkpoint in a remote process. In this algorithm,
processes are coupled: checkpoints are kept in the storage
space (local drive or memory) of the buddy, and reciprocally.
Each process also keeps a local copy (local drive or memory)
of its last checkpoint image. In case of failure, all living
processes rollback from the local image, while the processes
replacing a process victim of a failure load the corresponding
checkpoints from the designated buddies. This approach
allows to use the high-speed network to transfer the check-
point, and to distribute the load of checkpoint storage (which
happens in a single wave in coordinated checkpointing
protocols) between all the peers of the system. The double
checkpointing algorithm comes in two versions: after the
blocking version of [1], a non-blocking version has been
introduced by Ni, Meneses and Kalé [2], which exhibits
better performance, because checkpointing can then be (at
least partially) overlapped with computations. However, the
increased performance comes with a higher risk of fatal
failure, which is not addressed in [2].

In this paper, we revisit both versions of the double
checkpointing algorithm, and we introduce a unified and

IEEE
computer
® psouety

Period
done

Local checkpoint
done

Remote checkpoint
done

Node p l 1 I

Node p'

Figure 1: Non-blocking checkpoint algorithm (see [2]).

extended model to assess both the performance and risk
of the different strategies. Our first major contribution is
to provide a quantitative assessment of the impact of non-
blocking checkpointing on both performance and risk. Our
second major contribution is the design of a new peer-to-
peer checkpointing algorithm, called the triple checkpointing
algorithm, that can work at constant memory, and achieves
both a higher efficiency and a better risk handling than the
double checkpointing algorithm. We provide performance
and risk models for all the evaluated protocols, and compare
them through comprehensive simulations.

The rest of this paper is organized as follows: in Sec. II,
we present the double checkpointing algorithm, together
with our model extension to assess the impact of non-
blocking protocols. We show how to compute the optimal
checkpoint period in Sec. III. Next, we introduce the triple
checkpointing algorithm in Sec. IV, and we conduct its
analysis in Sec. V. Then, having a performance model for
all the algorithms, we instantiate these models using a com-
prehensive set of parameters, and compare their efficiency
and risk in Sec. VI. We discuss related work in Sec. VIL
Finally, we provide concluding remarks.

II. THE DOUBLE CHECKPOINTING ALGORITHM

In this section, we review and extend the double check-
pointing algorithm that has been proposed in the literature,
first with a blocking version by Zheng, Shi and Kalé [1],
and then with a non-blocking version by Ni, Meneses and
Kalé [2]. In both versions, the main idea is to avoid using
a centralized stable storage by storing checkpoints in local
memory. To avoid the possibility for a single failure to crash
the whole application, local checkpoints must be replicated.
Thus platform nodes are partitioned into pairs, and each
node in a pair exchanges its checkpoint with its buddy. As a
consequence, each node saves two checkpoints, one locally
(storing its own data) and one remotely (receiving and stor-
ing its buddy’s data), hence the name double checkpointing.

The double checkpointing algorithm is a coordinated pro-
tocol where nodes operate synchronously. In what follows,
we reuse the notations of [2] whenever possible. Also,
without loss of generality, it is assumed that the application
progresses at unit speed when it is not slow-downed by
checkpoint-related activities, so that time-units and work-
units can be used indifferently. The non-blocking algorithm
is illustrated in Figure 1 and is summarized below:

707

o Checkpoints are taken periodically, with a period P =
0+60+0

o In the first part of the period, of length J, each node
checkpoints locally, in blocking mode. No application
work is performed in parallel.

e In the second part of the period, of length 6, each
node checkpoints remotely, i.e. it exchanges its check-
point file with its buddy. Some application work is
performed in parallel, but not at full speed, due to the
overhead induced by the concurrent communications
for exchanging files. This overhead is expressed as ¢
work units.

o In the third part of the period, of length o, the appli-
cation progresses at full speed.

Altogether, in the absence of failures, the work executed
during each period of length P is

W=0-¢)+0=P—-0—¢

Note that in the original paper [2], the period is decomposed
is only two parts, with 7 = 6 + o being the time after
the local checkpoint, letting P = §d + 7 and W = 7 — ¢.
Decomposing the period into three parts is equivalent but
makes thing clearer when failures strike (see Sec. III).

A key-feature of the non-blocking algorithm is to over-
lap computations and checkpoint file exchanges during the
second part of the period of length 6, at the price of some
overhead ¢. Intuitively, the larger 6, the more flexibility to
hide the cost of the file exchange, hence the smaller the
overhead due to checkpointing in the absence of failures.
However, in [2], the overhead ¢ is fixed independently of
the value of 6. We propose to extend the model as follows:

e When 6 = 0p;,, the communication has the smallest
possible duration. In this case it is fully blocking,
and no computation can take place concurrently. The
overhead is 100%, i.e., @ = Oin.

e When 0 = 0., the communication is made long
enough so that it can fully be overlapped with com-
putation. In that case, the overhead is ¢ = 0.

o We use a linear interpolation between these extremes.
The overhead is ¢ when the communication time is

0((15) = gmin + O‘(Qmin - ¢)

We derive that ¢ = 0 for 0 = Opax = (1 +)Omin.
This last equation gives an intuitive explanation for
the parameter «, which measures the rate at which
the overhead decreases when the communication length
increases.

In a failure-free environment, both 8 and o should be
made as large as possible, in order to minimize the overhead
due to local and remote checkpointing. This is equivalent to
letting the ratio % tend to 1. But the advent of failures calls
for smaller period lengths. Indeed, let M denote the Mean

Time Between Failures (MTBF) of the platform. When a

failure hits a node, which happens every M time-units in
average, the work executed since the last checkpoint is
lost, and must be re-executed, which induces an overhead
proportional to the loss. The optimal period length P is the
result of the trade-off between minimizing the waste due to
checkpointing (large periods) and re-executing only a small
amount of work when a failure strikes (small periods).

When a failure hits a node, there is a downtime period

of length D for that node, that represent the overhead to
detect the failure and allocate a new replacement node for the
computation. Then we can start the recovery from the buddy
node. There are two checkpoint files that have been lost due
to the failure, and which the buddy node must re-send to the
faulty processor: (i) the checkpoint file of the faulty node,
which is needed for recovery; and (ii) the checkpoint file of
the buddy node, which has been lost after the failure and
which will be needed if the buddy node would fail later on.

Obviously, the first file (checkpoint of the faulty node)

should be sent as fast as possible, i.e. in time 6, because
all processors are stopped until the faulty one has recovered
from the failure. Using the notations of [2], the recovery time
R is thus equal to 6;,. As for the second file (checkpoint
of the buddy), there are two possibilities:

o The file is sent at the same speed as in regular (failure-
free) mode, in time 6(¢). Some overlap is possible,
and the overhead is ¢. This scenario, which we call
DOUBLENBL ((NBL for Non-Blocking), is the one
chosen in [2].

o The file is sent as fast as possible, in time 0, = R.
This scenario, which we call DOUBLEBOF (BOF for
Blocking on Failure), does not allow for any overlap
during the communication.

The application is at risk as long as the faulty processor
has not stored a copy of its buddy’s checkpoint file. In
other words, until complete reception of both messages, it
is impossible to recover from a second failure that would
hit the buddy. One can say that the DOUBLEBOF favors
risk reduction, at the price of a higher overhead, while
DOUBLENBL favors performance, at the price of a higher
risk. In Sec. IIl, we provide a detailed analysis of the
performance and risk of both strategies.

ITI. ANALYSIS OF THE DOUBLE CHECKPOINTING
ALGORITHM

In this section, we compute the overhead induced by
the double checkpointing algorithm, and we analytically
determine the optimal checkpointing period.

A. Computing the waste

Let Th,se be the base time of the application without any
overhead due to resilience techniques. First, assume a fault-
free execution of the application: every period of length P,
only W =P — § — ¢ units of work are executed, hence the
time 1§ for a fault-free execution is

708

Figure 2: DOUBLENBL strategy, failure during third part of
the period

P
T = WTbase

Now, let T' denote the expectation of the execution time
with the double checkpointing algorithm (any version). T'
can refer to a single application or to the platform life if
many jobs are running concurrently. In average, failures
occur every M time-units, and for each of them we lose
F time-units, so there are % failures during the execution.
Hence we derive the equation:

ey

T
T =T+ M]: 2)
which we rewrite as
Fopy 0460
(]. - M) (1 - ,P)T - Tbase (3)
Defining the waste as

B F 0+ ¢

WASTEfl—(l—M)(lfi,p))

we can express Equation (3) as (1 — WASTE)T = Thase-
The waste is the fraction of time where nodes do not
perform useful computations. In Equation (4), we identify
the two sources of overhead: (i) the term WASTEg = %,
which is the waste due to checkpointing in a fault-free
execution, by construction of the algorithm; and (ii) the term
WASTEgj = %, which is the waste due to failures striking
during execution. With these notations, Equation (4) writes:
1—WASTE = (1 — WASTEg;) (1 — WASTE¢), and we derive

WASTE = WASTEg + WASTEg — WASTE¢,; WASTE¢ (5)

There remains to determine the (expected) value of F in
each strategy, denoted as JFyp; for DOUBLENBL and Fy,¢ for
DOUBLEBOF. Then we will be able to determine the value
of P that minimizes 7" in Equation (3), or, equivalently, that
minimizes WASTE in Equation (5).

DOUBLENBL strategy: Here we aim at determining
the expected value of Fyp, for the DOUBLENBL strategy,
where the fault node starts by receiving its own checkpoint
file in time R before the buddy’s checkpoint file in time
0(¢). The faulty node undergoes a downtime and recovery,
of length D + R. Then it starts re-executing the work that
has been lost. The amount of work to re-execute depends
upon the part of the period where the failure strikes, hence
there are three cases. Now, failures strikes uniformly across
the period, regardless of the distribution law of the failures:

this is because the instants at which periods begin and at
which faults strike are independent. Hence we can compute

5 0
Fin =D+ Rt ZRE + 5RE + %Rgg (6)

where RE; is the expected re-execution time when the
failure strikes during the i-th part of the period.

We start with the case when the failure causes the least
damage i.e. when it strikes during the third part of the period,
after both checkpoints have been taken. See Figure 2 for an
illustration. We compute RE3 as follows:

o The faulty processor cannot execute any work during
D + R time-units.

e Then it starts re-executing the work that has been
lost, namely Wi,st = (0 — ¢) + tiost- The first term
corresponds to the work executed during the second
part of the period, taking into account the overhead
associated to this part. The second term comes from
the third part of the period, where work executes at
full speed.

o During the first § time-units of re-execution, there is an
overhead ¢ due to receiving the buddy’s checkpoint.
After that, the re-execution of the remaining work
Wiost — (0 — ¢) progresses at full speed.

Altogether, the re-execution time is 6 + Wi,st — (0 — &)
6 + tiost- The expected value of 10 is F, because failures
strike uniformly during the third part of the period. This
leads to

ag
RE; =0+

When a failure hits the first part of the period, during local
checkpointing, it causes more damage: the work W during
the whole previous period has to be re-executed, and we get
Wiost = W + tos¢. Just as before, the re-execution time is
0 4+ Wiest — (0 — ¢). Here the expected value of t;,t is g.
We derive:

é

When a failure hits the second part of the period, during
remote checkpointing, it causes the same damage as during
the first part: the work W during the whole previous period
has to be re-executed, and we get Wi,y = W +1;,5:. Again,
the re-execution time is 6+ W,s; — (0 —), but the expected
value of ;.5 is even higher than when the failure hits the
first part of the period: ¢;,5t = § + g. We derive:

0
REy=0+0+5+

We are ready to compute the value of F, using Equa-
tion (6). After some simplifications, we obtain

P
fnb]:D+R+€+§ (7

This is almost in accordance with the value reported in [2]:
they derive the value F,p — ¢ instead of Fy, because they

709

forgot the overhead due to receiving the second checkpoint
file while re-executing.

DOUBLEBOF strategy: Here we aim at determining
the expected value of Fior for the DOUBLEBOF strategy,
where both checkpoint files are received in minimum time
Omin = R. As before, there are three cases, depending upon
the part of the period where the failure strikes, and the
computation goes in a similar way as for the DOUBLENBL
strategy. Indeed, for each part of the period, the amount
of work to re-execute W4 is the same, but it is entirely
executed at full speed instead of being slowed-down during
the first # time-units (since all communications are already
completed). In other words, we add R to the recovery time to
account for the second blocking message, and we suppress
¢ from the time needed to re-execute, which leads to:

P

Foot =Fmwl +R—¢p=D+2R+60— ¢+ —

5 ®

B. Waste minimization

We use a computer algebra system (Maple?) to compute
the optimal period that minimizes the total waste. We obtain
the following formulas:

TOwi = /2(6+¢)(M —R—D—0)
T Opot = /2(0+ ¢)(M —2R—D — 0 + ¢)

€))
(10)

There is a similarity with the formulas of Young [6],
namely 7 = V2M§ + 6, and of Daly [7], namely 7 =
\/2(M + (D + R))d + 6. However, in both these formulas,
& represents the time needed to checkpoint the whole ap-
plication onto stable storage, while with the (distributed)
double checkpointing algorithm, § is the time needed to
checkpoint a single node locally. The value of the optimal
period is therefore much larger for the double checkpointing
algorithm than for a centralized scheme based on global
remote storage. The value of the optimal waste, whose

dominant term is ,/% for all reasonably large values of
M, is reduced accordingly.

C. Risk

When a failure strikes a node, the application is at risk
until the faulty node has recovered and received the copy of
its buddy’s checkpoint. We let Risk denote the length of the
risk period, which is Risk = D 4+ 2R for DOUBLEBOF and
Risk = D + R + 6 for DOUBLENBL.

In this section, we compute the success probability of
the application (no fatal failure throughout execution) for
both strategies. Let n be the number of processors in the
whole platform. Assume as in [1] that failures strike with
uniform distribution over time, and let A\ = ﬁ denote the
instantaneous failure rate of each processor. The inverse of A

Zhttp://www.maplesoft.com/products/Maple/

is the individual processor MTBF and is estimated to range
from a few years to one century in the literature.

Recall that 7' denotes the expectation of the execution
time of the application with the double checkpointing algo-
rithm (any version). Consider a pair made of one processor
and its buddy. The probability of having the first processor
fail during execution is AT, and the probability of having
the pair failing during execution is 1 — (1 — A\T")? ~ 2)T.
Now, given that one processor fails, the probability of having
the second one fail right after, within the risk period, is
ARisk. Hence the probability that the pair experiences a fatal
failure during execution is 2AT'ARisk. Since the application
succeeds if and only if all pairs succeed, the probability
that the application will fail is 1 — (1 — 2A\2TRisk)™/2, or
equivalently, the success probability is

Paouple = (1 — 2\ TRisk)™/2 (11)

This equation was originally given in [1], except that they
forgot the factor 2 to account for the failure probability of
both processors in the pair. They also compare the value
of Pgouble With the probability Py, that the application will
succeed in the absence of checkpointing. In that case, the
execution time is Th,e, and we derive that

]P)base = (1 -)\Tbase)n (12)

Equation (11) assesses the impact of the risk period length
Risk on the resilience of the application. We can now
quantitatively compare the DOUBLENBL and DOUBLEBOF
strategies in terms of both performance and reliability. We
provide such an evaluation in Sec. VI.

IV. THE TRIPLE CHECKPOINTING ALGORITHM

In this section, we introduce a new algorithm based on
processor triples rather than on processor pairs. We show that
this new algorithm is both more efficient and reliable than
the double checkpointing algorithm, while equally memory-
demanding. In fact, the main motivation to design a novel
in-memory checkpointing algorithm is to provide a better
answer to the following question: given a fixed amount
of memory available for checkpointing, what is the best
strategy for performance and reliability?

The double checkpointing algorithm of [1], [2] requires
that sets of two checkpoint files can be stored in the memory
of each processor. As with all coordinated checkpointing
protocols, the collection, for all processes in the system, of
a set of checkpoints, represents the (global) snapshot of the
parallel application. Such sets must be updated atomically.
This is implemented by keeping two sets at all time: the
last set of checkpoints that was successful (by definition
the first set of checkpoints is represented by the starting
configuration of the application and is always successful),
and the current set of checkpoints, that might be unfinished
at the time when a failure hits the system.

710

Remote checkpoint
done on preferred buddy

R S S { E—— ' |

Remote checkpoint

done on secondary buddy ~ Feriod

done

Figure 3: The triple checkpointing algorithm

So, in double checkpointing algorithms, a local set con-
tains two images: the image of the current process and
the image of the buddy process. Given this memory con-
straint, can we do better than pairing each processor with a
buddy? In fact, when a failure strikes a processor, the local
checkpoint is lost, and must be recovered from the buddy.
This calls for replacing the local checkpoint by that of a
secondary buddy. Let us consider how checkpoint images
are created: a process can create its checkpoint image using
the fork system call that creates a copy in memory of the
current state of the process. Modern operating systems do
not create an explicit copy of all the pages of the parent
process at the time of the call, but instead mark all pages of
the parent process as copy-on-write, allowing to share most,
if not all, the process pages. The parent process can continue
its work, while the child process uploads its checkpoint
image to the buddy file system, releasing its private copy
of the pages as soon as they are successfully uploaded. This
incurs a minimum overhead to the checkpointing process,
and allows a significant overlap of application process and
checkpoint transfer. If the rate of transmission is high
enough, only a small number of pages will need to be
actually duplicated before the child process releases them.

Buddy processes can then store the checkpoint images
in their memory or in local storage, as they were doing
in the double checkpointing algorithm. The system must
decide for a trade-off between taking more time to upload
the checkpoint image to the buddy processes in order to
reduce the pressure on the network, and taking less time to
upload the checkpoint image to the buddy processes in order
to reduce the amount of pages that must be created with
the copy-on-write mechanism. This trade-off is simplified
by ordering the data that is uploaded to the buddy processes
from the most likely to be modified to the least likely to be
modified by the ongoing computation.

This idea leads us to the triple checkpointing algorithm,
which is illustrated in Figure 3. Processors are organized
in triples. Within a triple, each processor p has a preferred
buddy p’ and a secondary buddy p”’. We organize a rotation
of buddies, so that p’ has p” for preferred buddy and p for
secondary buddy, and p’ has p for preferred buddy and p’
for secondary buddy.

From Figure 3, we see that the algorithm operates in
a similar way as the double checkpointing algorithm. The

period is still divided into three parts, but the first part is
different: the local checkpoint is replaced by sending the
checkpoint image to the preferred buddy (and receiving the
checkpoint of the secondary buddy). The duration of the
first part becomes 0(¢) instead of §. The second part of the
period is for an exchange of checkpoint files (sending to
the secondary buddy and receiving from the preferred one),
and its duration is 6(¢), just as before. During the third part
of the period, computations proceed at full speed during o
seconds, just as before again.

The main advantage of the new scheme is to dramatically
reduce the overhead induced by checkpointing (WASTEg;, the
waste due to checkpointing in a fault-free execution, tends
to zero) while maintaining a smaller risk, even for large
values of 6 that might be needed to achieve a fully non-
blocking, hence overhead-free, checkpoint. Indeed, there
must be three successive failures within a processor triple
for the application to experience a fatal failure, instead of
two failures striking a processor and its buddy in the double
checkpointing algorithm.

One can envision two versions for the triple checkpointing
algorithm. After a failure, the preferred buddy always sends
the checkpoint file of the faulty node as fast as possible,
in blocking mode, and in time 6,;, = R. But there is a
choice for the next two communications, that correspond
to the checkpoint images of the two buddies. Either these
communications are executed in blocking mode and in
minimum time, or they are executed in overlapped mode, in
time 0(¢). The first version further reduces the risk, while
the second version minimizes the overhead. Because the risk
is already very low in both versions, we only deal with the
second, non-blocking version, which we denote as TRIPLE.

V. ANALYSIS OF THE TRIPLE CHECKPOINTING
ALGORITHM

In this section we compute the waste and the risk of the
triple checkpointing algorithm TRIPLE. We use the same
notations as in Sec. III. Since the derivation is similar, we
omit details and only provide final formulas.

A. Computing the waste

As before (see Equation (5)), there are two sources of
overhead: WASTEy, the waste due to checkpointing in a
fault-free execution, and WASTEg; J;\:j}‘, the waste due
to failures striking during execution. It is easy to derive that
WASTEgi = % As for the value of F;, we use a modified
version of Equation (6) to account for the different lengths

of the three parts of the period:

0 0 o
Fi=D+ R+ 57@51 + 57352 + 57353

We proceed to determine the (expected) value of F:

e REI=20+0+1
o R52:320

(13)

711

e RE3 =20+ 3
which leads to

J-'m=D+R+9+§

We observe that the value of F is the same for DOU-
BLENBL and TRIPLE (F,, = JFui). Hence the value of
WASTEg; is the same too. However, the final waste is
different, because we now have WASTEg = 22 instead of
WASTE = 252,

(14)

P

B. Waste minimization

As before, we use the computer algebra system to com-
pute the optimal period that minimizes the total waste. We
obtain the following formula, which is similar to the value
obtained for DOUBLENBL (Equation (9)):

TOuwi =2y/¢(M — D — R—0) (15)

C. Risk

When a failure strikes a node, the application is at risk
until the faulty node has recovered and received the copy of
its two buddy checkpoints. We let Risk denote the length of
the risk period, which is Risk = D + R + 20 (note that it
would be reduced to Risk = D + 3R if we used a blocking-
on-failure version of the algorithm).

We compute the probability of a fatal failure using
the same line of reasoning as before. Let 7' denote the
expectation of the execution time of the application with
the triple checkpointing algorithm (any version). Consider
a triple made of one processor and its two buddies. The
probability of having one of the three processors fail during
execution is 3AT, up to second order terms. Given that
one processor fails, the probability of having the pair of
remaining processors fail right after, within the risk period, is
2)Risk, up to second order terms. And given that situation,
the probability that the last processor also fails during the
risk period is ARisk. Finally, the probability that the triple
experiences a fatal failure during execution is 6A3T'Risk>.
Since the application succeeds if and only if all triples
succeed, the probability that the application will succeed is

Puiple = (1 — 6A>TRisk?)™/3 (16)

Sec. VI provides a quantitative comparison of the success
probability of the double and triple checkpointing algo-
rithms.

VI. EXPERIMENTS

In this section, we consider the efficiency and risk of
DOUBLENBL, DOUBLEBOF and TRIPLE, under different
realistic conditions. Table I summarizes the two different
scenarios that we consider, namely Base taken from [2]
and Eza which models future exscale platforms.

0.8
0.6
0.4
0.2

Waste
0000
oNPOO—
Waste
o000
oA

1min

1day O

1day O

0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

Waste
0000
[SICFNCY RN

1day O

(a) DOUBLEBOF (b) DOUBLENBL (c) TRIPLE
Figure 4: Waste for Scenario Base, function of ¢/R and M
Scenario | D o) R | « n 12
Base | 0 | 2 | 0<$<4 | 4 | 10 | 324x32 R e
Eza 60 | 30 | 0<$<60 | 60 | 10 10° L A S I g
N N N
Table I: Parameters for the different scenarios: D is the down o 09
time; J the time to take the local checkpoint; ¢, the amount g 08
. . . o 07
of overhead; R the base time to load a remote checkpoint in 2 6
blocking mode; « the overlap speedup factor, which defines = 05 L
0 the time to upload a remote checkpoint; n is the number 04 i
of platform nodes (used for the risk assessment). 03} DoubleBoF/DoubleNBL ——
Triple/DoubleNBL -

A. Base scenario

The Base scenario takes the same values as [2]: for
checkpointing a memory of 512MB, the time to produce
a local checkpoint at the speed of SSDs is about 2s; for
uploading the same amount of data to a remote neighbor, at
the considered network speed, the time to upload (without
any work in parallel) will be about 4s. Since [2] does not
consider the time to allocate a new node on the machine,
we let D = 0. They consider only two cases for ¢ and
a: when the checkpoint operation cannot overlap with any
application progress (¢ = R), or when checkpointing does
not imply any overhead on the progress (¢ = 0, and o > 0).

Figure 4 presents the waste, with the model-computed
optimal checkpoint time, of each algorithm, as a function of
¢ (between 0 and R; the ratio ¢/ R is presented in the figure
for normalization) and of M (from 15s, where no progress
happens for any protocol, up to 1 day, where the waste is
almost 0 for all), the latter shown on a logarithmic scale. By
varying ¢, we consider the waste when the amount of work
that can be done during the checkpoint phase varies from 0
to no overhead at all. Moreover, since o = 10, checkpoint
communication is completely hidden between application
communications if the optimal checkpointing period allows
a duration of at least (v + 1)R = 11R. We point out that
this is a conservative assumption on the communication-to-
computation ratio.

Comparing the three subfigures together, one can see
that TRIPLE behaves slightly differently than DOUBLENBL
and DOUBLEBOF: indeed, TRIPLE takes a higher benefit
of a low value of ¢, because it does not suffer from the

712

0.2
0 01 02 03 04 05 06 07 08 09 1
oR

Figure 5: Waste for Scenario Base, (M = Th).

period § during which no progress is done in the double
checkpointing protocols. In a realistic setup, ¢ will not go
down completely to O in the triple checkpointing protocol,
because during the checkpoint transfer, some pages may
need to be copied by the copy on write mechanism of
fork; still, a very small ratio ¢/R can be achieved for
large enough values of 6, the file exchange phase. Similarly,
using the same approach, the value of ¢ could be reduced
significantly in the double checkpointing protocols, allowing
for a better benefit of the ¢ parameter. All three kinds of
protocols, however, clearly reduce their waste in a similar
fashion when the MTBF increases.

The differences between the three protocols is better
illustrated with Figure 5 which compares the waste of the
three algorithms, with a fixed value for M = 7h, relatively
to the efficiency of DOUBLENBL. The benefit of a non-
blocking approach is small, but noticeable: DOUBLEBOF
has always a higher waste than DOUBLENBL, until the
ratio of work that can be done during the checkpoint makes
waiting for the checkpoint transfer transparent.

Up to ¢/R < 0.5, TRIPLE has a much smaller waste
than any of the double checkpointing protocols. Because the
number of faults is low, the dominating part of the waste
comes from the failure-free case. TRIPLE does not suffer
from a blocking checkpoint time, as DOUBLENBL and
DOUBLEBOF do, and thus proves more efficient whenever
a large amount of work can be done in parallel with

Success Probability Ratio

2Iglatform Exploitation
(days)

(a) Ratio DOUBLENBL/ DOUBLEBOF succes probability

Success Probability Ratio

2Iglatform Exploitation
(days)

(b) Ratio DOUBLEBOF/ TRIPLE succes probability

Figure 6: Relative success probability for Scenario Base,
function of M and platform life 7. § = (o + 1)R.

the checkpoint. Once more time is spent communicating
checkpoint data than computing, however, TRIPLE suffers
from its double amount of data to communicate (compared
to the double checkpointing approaches, TRIPLE needs to
exchange twice the data on the network). The overhead,
however, is limited to 15% more waste in the worst case.

Furthermore, DOUBLEBOF and TRIPLE are expected to
provide a better risk preservation than DOUBLENBL. This
is the property that we quantify next. Figure 6a represents
the relative risk between DOUBLEBOF and DOUBLENBL.
A lower value means that DOUBLEBOF provides a better
risk tolerance. As illustrated by the figure, this is measurable
for long period of times (above 10 days), and for very low
MTBF (M < 60s); otherwise all protocols have a success
probability almost equal to 1. On this setup, the benefit of
blocking during the checkpoint is not significant, even if it
induces a waste lower than 2%. Figure 6b presents the same
comparison, but with TRIPLE compared to DOUBLENBL,
the most secure version of double checkpointing. Again,
a lower value means that TRIPLE provides a better risk
tolerance than DOUBLENBL. This time, in the same range
as where DOUBLEBOF was providing a small risk improve-
ment, the gain is quite significant, providing risk mitigation
by orders of magnitude. More importantly, even when the
MTBF increases, and the application duration decreases,

713

1.15

R
1.05
ke 1
& 095
2
2 0.9
2 oes
0.8 g
0.75 fot” DoubleBoF/DoubleNBL ——
Triple/DoubIeNBL -----------
07 L L L L
0 0.1 02 03 04 05 06 07 08 09 1
o/R

Figure 8: Waste for Scenario Fxa, (M = Th).

TRIPLE is able to tolerate twice more runs without incurring
a fatal failure than DOUBLENBL. It is striking to point out
that these numbers are achieved with § = (a + 1) R, which
corresponds to the largest possible risk duration for TRIPLE.

B. Exa scenario

We now consider a future exascale machine, as can be en-
visioned by the IESP work force in [3], [4]. Such a machine
is summarized in Table I under the name Fxa: based on
the assumption of a 1-GHz limit for each core, it will hold
10° 1-GHz cores. Taking the “slim” exascale assumption,
these cores would be distributed among 10% nodes, with
1,000 cores per nodes. Memory previsions plan around
64GB of memory per core, and we took the assumption
of a 1TB/s/node network capacity, and 500Gb/s/node of bus
limitation for the local storage capacity.

We then conducted the same set of evaluations as with
the Base scenario. Results are presented in Figures 7 to 9b.
First, we observe the same general behavior. TRIPLE remains
more robust than double checkpointing protocols for very
high failure frequency and long applications. DOUBLENBL
and DOUBLEBOF have a similar waste, also, as expressed
by Figure 8, but the gain of TRIPLE increases up to 25%
of that of DOUBLENBL when ¢/R = 1/10 while being
more reliable (see Figure 9b). The model also forecasts
that on such machines, the waste will be important when
failures hit the system more than once a day. Last, for
such an environment, Figure 9a shows that DOUBLEBOF
can provide a higher reliability than DOUBLENBL, to a
higher extent than on the Base scenario, for long-running
applications. As expected, TRIPLE provides an even higher
robustness with this respect (see Figure 9b), even with the
largest possible risk period (6 = (o + 1) R).

VII. RELATED WORK

Coordinated checkpointing has been studied since many
years. The major appeal of the coordinated approach is
its simplicity, because a parallel job using n processors of
individual MTBF M, 4 can be viewed as a single processor
job with MTBF M = % Given the value of M, an
approximation of the optimal checkpointing period can be

0.8
0.6
0.4
0.2

Waste
0000
oA
Waste

1min

1 day 0 1 day 0

(a) DOUBLEBOF

(b) DOUBLENBL

0.8
0.6
0.4
0.2

0.8
0.6
0.4
0.2

1day 0

(c) TRIPLE

Figure 7: Waste for Scenario Exa, function of ¢/R and M

Success Probability Ratio

53025
20
M (minutes) 15105 060 S0 Platform Exploitation

(weeks)

(a) Ratio DOUBLENBL/ DOUBLEBOF succes probability

o

5 1
< 0.9
z 1 0.8
5 08 0.7
% 0.6 0.6
8 - 0.5
£ 04 04
- 02 0.3
8 0

g 0

)

6055 50 454035

302555
M (minutes) 15105 060 %0 Platform Exploitation

(weeks)

(b) Ratio DOUBLEBOF/ TRIPLE succes probability

Figure 9: Relative success probability for Scenario Eza,
function of M and platform life 7. § = (o + 1) R.

computed as a function of the key parameters (downtime D,
checkpoint time C' and recovery time R). The first estimate
had been given by Young [6] and later refined by Daly [7].
Both use a first-order approximation for Exponential failure
distributions; their derivation is similar to the approach in
Equations (1) to (5). More accurate formulas for Weibull
failure distributions are provided in [8], [9], [10]. The
optimal checkpointing period is known only for Exponential
failure distributions [11]. Dynamic programming heuristics
for arbitrary distributions are proposed in [12], [13], [11].

The literature proposes different works [14], [15], [16],

714

[17], [18] on the modeling of coordinated checkpointing
protocols. In particular, [15] and [14] focus on the usage of
available resources: some may be kept as backup in order
to replace the down ones, and others may be even shutdown
in order to decrease the failure risk or to prevent storage
consumption by saving less checkpoint snapshots.

The major drawback of coordinated checkpointing proto-
cols is their lack of scalability at extreme-scale. These proto-
cols will lead to I/O congestion when too many processes are
checkpointing at the same time. Even worse, transferring the
whole memory footprint of an HPC application onto stable
storage may well take so much time that a failure is likely
to take place during the transfer! A few papers [18], [19]
propose a scalability study to assess the impact of a small
MTBF (.e., of a large number of processors). The mere
conclusion is that checkpoint time should be dramatically
reduced for platform waste to become acceptable.

This very conclusion is the major motivation for the
development of distributed checkpoint mechanisms. A first
idea is to use a multi-level approach, with local disks for a
high-rate checkpointing period and global stable storage for
a smaller-rate checkpointing period. Another possibility is
the in-memory blocking approach (with a buddy) suggested
by Zheng, Shi and Kalé [1]. This in-memory checkpointing
technique was later extended to a non-blocking version by
Ni, Meneses and Kalé [2]. As already mentioned, these
two papers constitute the main motivation for this work.
While [2] discusses the advantages of the non-blocking
version over the blocking version in terms of performance,
it fails to mention the augmented risk. This is why we
have presented a two-criteria assessment of both versions.
In addition, this paper is the first attempt at providing a
unified model for quantifying the impact and overhead of
checkpointing in parallel with application progress.

VIII. CONCLUSION

Checkpoint transfer and storage are the most critical issues
of rollback/recovery protocols for the next few years. The
overhead of transferring the checkpoint images to a stable
storage dominates the cost related to this approach, and

algorithms that allow to distribute this load among the whole
system provide a much better scalability in the number
of processors. However, since checkpoint storage is not
reliable anymore, these algorithms introduce a risk of non-
recoverable failures.

In this work, we have reconsidered the double checkpoint-
ing algorithms proposed by Zheng, Shi and Kalé [1] and
by Ni, Meneses and Kalé in [2], and we have introduced
a new version, the DOUBLEBOF algorithm, that takes the
same approach as [2], but tries to reduce the duration of
the risk period by focusing all resources to restore a safe
state, at the cost of increasing the overhead of each failure.
More importantly, we have provided a unified and extended
model that allows a performance/risk bi-criteria assessment
of existing and future double-checkpointing algorithms. The
model incorporates a new parameter « that dictates how
fast a checkpoint can be transferred to overlap entirely the
transfer cost with application computation.

We have also designed a new triple checkpointing algo-
rithm that builds on modern operating system features to
save the checkpoint on two remote processes instead of one,
without much more memory or storage requirements. The
new algorithm has excellent success probability and almost
no failure-free overhead when full overlap of checkpoint
transfers can be enabled. We have derived the performance
and risk factors of the new algorithm using our unified
model, and we have compared these factors to those of
both double checkpointing versions. We have instantiated
our model with realistic scenarios, which all conclude to
the superiority of the triple-checkpointing algorithm.

Future work will proceed along two main directions. First,
we took conservatively high values for the new model pa-
rameter « in this study, thereby reducing the potential benefit
of the triple checkpointing algorithm. We plan to extend
this work by studying real-life applications and propose
refined values for o for a set of widely-used benchmarks.
Second, the perspective of very small MTBF values on
future exascale platforms calls for combining distributed in-
memory strategies such as those discussed in this paper, with
uncoordinated or hierarchical checkpointing protocols with
message logging, in order to further reduce the waste due
to failure recovery.

Acknowledgments. Y. Robert is with the Institut Universitaire
de France. This work was supported in part by the ANR
RESCUE project.

REFERENCES

[1] G. Zheng, L. Shi, and L. V. Kale, “FTC-Charm++: an in-
memory checkpoint-based fault tolerant runtime for Charm++
and MPL” in Proc. 2004 IEEE Int. Conf. Cluster Computing.
IEEE Computer Society, 2004.

X. Ni, E. Meneses, and L. V. Kalé, “Hiding checkpoint over-
head in HPC applications with a semi-blocking algorithm,”
in Proc. 2012 IEEE Int. Conf. Cluster Computing. IEEE
Computer Society, 2012.

(2]

715

(4]

(5]

(6]

(7]

[9]

[10]

(1]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

J. Dongarra, P. Beckman, P. Aerts, F. Cappello, T. Lippert,
S. Matsuoka, P. Messina, T. Moore, R. Stevens, A. Trefethen,
and M. Valero, “The international exascale software project:
a call to cooperative action by the global high-performance
community,” Int. J. High Perform. Comput. Appl., vol. 23,
no. 4, pp. 309-322, 2009.

F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and
M. Snir, “Toward Exascale Resilience,” Int. J. High Perform.
Comput. Appl., vol. 23, no. 4, pp. 374-388, 20009.

A. Bouteiller, T. Herault, G. Krawezik, P. Lemarinier, and
F. Cappello, “MPICH-V: a multiprotocol fault tolerant MPL,”
IJHPCA, vol. 20, no. 3, pp. 319-333, 2006.

J. W. Young, “A first order approximation to the optimum
checkpoint interval,” Comm. of the ACM, vol. 17, no. 9, pp.
530-531, 1974.

J. T. Daly, “A higher order estimate of the optimum check-
point interval for restart dumps,” FGCS, vol. 22, no. 3, pp.
303-312, 2004.

Y. Ling, J. Mi, and X. Lin, “A variational calculus approach
to optimal checkpoint placement,” IEEE Trans. Computers,
pp. 699-708, 2001.

T. Ozaki, T. Dohi, H. Okamura, and N. Kaio, “Distribution-
free checkpoint placement algorithms based on min-max
principle,” IEEE TDSC, pp. 130-140, 2006.

M.-S. Bouguerra, T. Gautier, D. Trystram, and J.-M. Vincent,
“A flexible checkpoint/restart model in distributed systems,”
in PPAM, ser. LNCS, vol. 6067, 2010, pp. 206-215.

M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and
F. Vivien, “Checkpointing strategies for parallel jobs,” in
SC’2011 Supercomputing Conference. ACM Press, 2011.

S. Toueg and O. Babaoglu, “On the optimum checkpoint
selection problem,” SIAM J. Computing, vol. 13, no. 3, pp.
630-649, 1984.

M.-S. Bouguerra, D. Trystram, and F. Wagner, “Complexity
analysis of checkpoint scheduling with variable costs,” IEEE
Transactions on Computers, vol. 99, no. PrePrints, 2012.

J. S. Plank and M. G. Thomason, “Processor allocation and
checkpoint interval selection in cluster computing systems,”
J. Parallel Dist. Computing, vol. 61, p. 1590, 2001.

H. Jin, Y. Chen, H. Zhu, and X.-H. Sun, “Optimizing HPC
fault-folerant environment: an analytical approach,” in I[CPP’
2010. 1EEE Computer Society, 2010.

L. Wang, P. Karthik, Z. Kalbarczyk, R. Iyer, L. Votta, C. Vick,
and A. Wood, “Modeling Coordinated Checkpointing for
Large-Scale Supercomputers,” in Proceedings of ICDSN’05,
2005, pp. 812-821.

R. Oldfield, S. Arunagiri, P. Teller, S. Seelam, M. Varela,
R. Riesen, and P. Roth, “Modeling the impact of check-
points on next-generation systems,” in Proceedings of IEEE
MSST’07, 2007, pp. 30 —46.

Z. Zheng and Z. Lan, “Reliability-aware scalability models
for high performance computing,” in Proc. of IEEE Clus-
ter’09, 2009, pp. 1 -9.

FE. Cappello, H. Casanova, and Y. Robert, “Preventive mi-
gration vs. preventive checkpointing for extreme scale super-
computers,” Parallel Processing Letters, vol. 21, no. 2, pp.
111-132, 2011.

